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Abstract--A Lagrangian approach is used to simulate particle dispersion in anisotropic turbulent flows. 
Discrete particles are tracked in three dimensions, influenced by the fluid's turbulent velocity fluctuations. 
The fluctuations are temporally and directionally correlated through a statistical sampling method 
reflecting the anisotropy of the flow field. They are calculated at the discrete particle's position through 
a spatial correlation which takes into consideration the anisotropy of the Reynolds stresses. The method 
is first tested as to the performance of the temporal and directional correlation features and is then 
combined with a Eulerian scheme and an algebraic Reynolds stress model for the prediction of the carrier 
phase. The final form of the model is used to predict a two-phase turbulent round jet and a two-phase 
inert flow from a quarl burner, with swirl. In parallel to these, the method is compared to a previous 
particle-tracking method based on an isotropic hypothesis. 
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lations 

1. I N T R O D U C T I O N  

In this paper, a method for the simulation of  particle-laden flows is presented analytically and tested 
taking into consideration the effect of  the non-isotropic character of  the turbulence, particularly 
on the discrete phase. 

When studying the dispersion of  particles in turbulent flows there are two general approaches. 
The Eulerian approach considers both phases as continuous and solves the transport  equations for 
each. An example of  such a method can be found in Picart et al. (1986). The Lagrangian approach 
differs in the way that it deals with the particulate phase. A large number  of  individual particle 
trajectories is simulated and from these, statistical mean values are computed (Anagnostopoulos 
& Bergeles 1992). 

The problem with the Lagrangian approach is that, in order to simulate a discrete particle's 
trajectory, the carrier phase's instantaneous turbulent velocity fluctuations must be known at each 
point of  the trajectory. These fluctuations are, of  course, time dependent and the only known 
quantities, which are the Reynolds stresses derived from a turbulence model, are time averaged. 
Yuu et al. (1978) proposed the use of  an isotropic turbulent velocity fluctuation which is sampled 
randomly from a Gaussian P D F  with a standard deviation of  (2/3k) °5, where k is the carrier phase's 
turbulent kinetic energy. The period for which the same fluctuation acts on the particle is 
determined through two time scales: the eddy lifetime and the eddy transit time; the smallest of  
which is taken to be the maximum interaction period. 

Gosman  & Ioannides (1981) defined the two time scales and introduced a method for the 
prediction of  the dispersion of  particles in an isotropic turbulent flow. Variations of  this method 
through different definitions of  these scales were also presented by Shuen et al. (1983a) and Kalio 
& Stock (1986). However, these models are still based on an isotropic hypothesis for the turbulence 
and do not account for the temporal correlation of  the fluctuations. 

Subsequently, Zhou & Leschziner (1991) and Berlemont et al. (1990) have proposed two methods 
for predicting particle dispersion based on Yuu's  original idea but having introduced features that 
account for the temporal  correlation of turbulent fluctuations and for anisotropy and cross-corre- 
lations. Predictions of  particle dispersion in an anisotropic turbulent pipe flow have also been 
presented by Milojevic (1990), however the model he used does not take into account the anisotropy 
of  the turbulence when tracking the particles. 
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Berlemont et al. (1990) take temporal correlation into account, using a method that relates each 
Lagrangian time step to several previous ones, while Zhou & Leschziner (1991) propose relating 
only every two subsequent time steps--believing that this is sufficient for information to be carried 
along the trajectory. However, if the time step is to be large enough to permit faster calculations 
or the particle is dense enough to move significantly away from a fluid particle's trajectory in one 
time step, then the fluid's turbulent velocity fluctuations cannot be considered constant and a 
spatial correlation of these must be taken into account. This is not considered by Zhou & 
Leschziner (1991) but will be examined in this paper. 

All the features of this model will be presented accompanied by step-by-step testing of each 
feature and underlining of the differences from other models. The method will also be used to 
simulate particle behaviour in a two-phase turbulent round jet. Testing the model in three 
dimensions, an inert flow from an unconfined quarl burner with swirl will also be predicted. In these 
final tests, a comparison is made between the results of the present model and a previous method 
which assumes isotropic turbulence. 

2. PRESENTATION OF THE MODEL 

In the model, three basic features can be identified. The first accounts for the temporal correlation 
between fluctuating turbulent velocities of the carrier phase, while the second is an extension of 
the first to account for directional correlation, which is most evident in anisotropic turbulence. The 
third feature is the spatial correlation used to calculate the fluid velocity's fluctuations at the 
position of the discrete particle. 

2.1. Temporal Correlation 

The basis of the Lagrangian approach is the simulation of a simple fluid particle's trajectory. 
This would also be the trajectory of a discrete particle if it were light enough to follow the flow 
perfectly. At each time step, the fluid's instantaneous velocity must be known. This velocity consists 
of the mean velocity which can be found experimentally or from Eulerian predictions of the carrier 
phase, and of the turbulent velocity fluctuations. It is these time-dependent fluctuating velocities 
that must be calculated so that the fluid particle's trajectory can be followed. It is obvious, however, 
that since they are time dependent, two fluctuating velocities calculated for two subsequent time 
steps must be correlated. 

The temporal correlation proposed by Zhou & Leschziner (1991) is accounted for by the time 
correlation coefficient R(6t ) ,  which is defined as 

u( t )u( t  - fit) 
R ( f t )  = [i] 

u2( t  - 6 t )  

A commonly used approximation for R(6 t )  is the following Frenkiel function: 

- 6 t  m 6t 

In [2], TL is the Lagrangian time scale and m is a parameter which determines the number of negative 
loops in the correlation function and is therefore linked to the type of flow under consideration. For 
this simple case of homogenous isotropic turbulence m = 0 can be used, which gives the correlation 
function an exponential form without negative values. A pipe flow or a grid-generated turbulence 
would require a different value for m. Picart et al. (1986) also elaborate on the required value of m. 

Temporal correlation is introduced to the method when turbulent velocity fluctuations at time 
level t are expressed as 

v, = {B }v,_ ~, + d,. [3] 

The matrix {B} expresses all effects from previous time steps and the second term expresses the 
randomness involved in the last time step 6t. In one dimension, [3] can be written as (Zhou & 
Leschziner 1991): 

ut = R(6t)u,_~, + d~, [4] 
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where d, is sampled from the Gaussian conditional PDF: 

! { [ u , -  R(ft)u,_a,] 2 
P (d,) = ,v/~[-~, - R2(ft)u2.-f,] ' a e x p .  - . . . . . v . . -  2[~.2 S ~ ] ) "  [5 ]  

A simple test of  the performance of  time correlation in the method can be carried out by 
predicting the dispersion of  a cloud of massless particles discharged from a point source at x0 and 
transported by a uniform steam velocity U0. Turbulence can be assumed to be both homogenous 
and isotropic (therefore m = 0 in [2]) and, according to Hinze (1975), the mean square displacement 
y2 should result as 

y-5(x) = 2~,r L (x - Xo) ~ ,  t6] 

where v 2 is the mean square fluctuating velocity. 
The attempt to predict [6] using the time-correlated method is made by recording the y locations 

of  a significantly large number of  particles (in a statistical sense) at given x locations, the number 
of  particles was considered sufficient when the mean value of  the y locations at a certain x location 
became zero. For  the graph in figure 1,100,000 particles were used and the mean y value was 0.5% 
of  x at x = 1 m. 

The same test is performed for different values of  the computational time step varying from 
1/10 to 10 times the values of  rL- The results prove that even when the time step is very small or 
large, the temporal correlation, and consequently the dispersion, is correctly accounted for by the 
method. 

2.2. Temporal and Directional Correlations 
The next step is to include a directional as well as a temporal correlation, something that would 

enable the model to also perform in anisotropic turbulence. Zhou & Leschziner (1991) express the 
turbulent velocity fluctuations v t = (u,, v,, w,)T as in [3]. When including directional and temporal 
correlations the correlation coefficients between v, and v,_ f, are: 

R r r  = u t u t - f t  R r  v = u t l ) t - f t  R r "  = g l t w t - f t  
" 2 " ' "~ - " 

U t - f t  U t  - ~St V t  - 6t U t  - bit W t  - f t  

]I~V v - -  t J t~ t - -~ t  R v  v = v t v t - 3 t  R v "  -~- z ) t w t - f t  

"" Vl ~IUt- -~I  "" V 2 "" Vl ~ f W t - 3 t  
- t - 6 t  - 

R..= w,u,_~, R.,.= w,v,_~, R.=w,w,_~, [7] 
W t  -- ~t Ut -- f t  14"t -- 6t Vt -- 6t W t - ~t 
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Multiplying [3] by v:_~, and then time averaging, the matrix {p> is given by 

{B } = io Hcovar);, In, 3 

where {D } is related to the Reynolds stresses and correlation functions, 

and (covar),, _d, is the covariant matrix of v, 6,: 

lu2 uv uw\ 
(covar),, 6, = 

[: ; :),_6,. 

PI 

[91 

If the correlation functions are known as in [2] then, as can be seen from the above, it is easy 
to define {b}. The Lagrangian time scale rr is given in section 2.3 along with the Eulerian length 
scale. 

It is pointed out that we prefer to non-dimensionalize the correlations with the form used in [7] 
because, this way when 6t + 0 and the correlation function of [2] becomes unity, the temporal 
correlation will become equal to the Reynolds stress at the same instant in time. This does not occur 
with the form used by Zhou & Leschziner (1991), in which the denominators become (fifl). 
This leads to rather mistaken calculation of the temporal cross-correlation, especially if this 
happens to be negative. As will be shown later, this new modification for anisotropic turbulence 
overcomes the difficulty that arises in the case of negative cross-correlation. 

Equation [5] was written only for one dimension but, in fact, it is derived from the three- 
dimensional PDF: 

1 

’ (df) = (2~)~” 1 covar ]$ 
exp] - 1 /2(4)T(covar)a, ’ MN, [I 11 

where (covar),, is the covariant matrix of d, and can be calculated in the same way as (covar),, in, 
if [3] is rearranged first: 

iI21 

Considering Z, a set of random variables with independent standard normal distribution N(0, 1), 
a sampling method is constructed to perform as the PDF in [I 11. This is accomplished when d, is 
written as 

d,= (b}Z P31 

and its components are correlated. Because of the symmetry of the PDFs for Z, it is possible to 
align Z, with d,., without affecting the generality of the method. Therefore, it may be considered 
that b,, = 4, = b,, = 0. Multiplying [13] by d: and then time averaging, the components of {b} are 
found to be: 

- 
b,, = (&Y’=, b,, = 0, h, = 0, 

b 

21 
= (4x4,) 

b,,’ 

bz2 = ($ - b;, )I’=, 633 = 0, 

b MA:) 
3, =-. 

6, 

b 
22 

= (4.4 - b,, b,,) 
b ’ 

b,, = (d:, - b:, - bi2)“=; 
22 

u41 

so the components of d, are easily defined from the random variables Z, , Z, , Z, and [ 131, while 
the values for d,id, can be found from [3] by multiplying and time averaging. The methodology 
is presented analytically in Zhou & Leschziner (199 1). 
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If we ignore the temporal correlation for now, (_{~ } --{0}),  then [3] leads to d, = v,. Considering 
the PDF in [l l] in two-dimensional space, where u 2 = v 2 = 0.5 m2/s 2 and u-v = 0.0, 0.2, 0.4 m2/s 2, a 
very enlightening test can be performed (shown in figure 2). The PDF is plotted ( ) for a specific 
range for the u and v velocities, while the sampling method described above is used to simulate 
the PDF's behaviour ( . . . . .  ). For each of  the three correlation values a total of  200,000 velocity 
samples were taken, the number o f  samples to fall inside a predefined area (Au, Av) was registered 
and from them the P D F  was reconstructed. The purpose o f  the test was to determine the effect 
o f  different correlation condit ions on the sampling method. Zero correlation means that the two 
velocities are equally liable to take a certain value and, therefore, the value of the velocity vector 
will be constant. This results in a perfect circle for the PDF in figure 2(a). When correlation exists 
then a certain value for one velocity predefines the value for the other, depending on the value of  
the correlation. Thus, when the correlation value becomes larger, the PDF becomes more and more 
elongated [figures 2(b, c)]. Under all conditions,  the sampling method shows good  agreement with 
the plot of  the PDF equation [11]. 

In the next test, both temporal and directional correlation are taken into account. A turbulent 
field is considered with a constant gradient o f  the mean velocity U0 = A . y  (.4 = const). In this field 
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Figure 2(a-c). Reconstruction of conditional PDFs. , Plots of the PDF in [11] . . . . .  , Sampling 
method. PDF values (from innermost curve outwards): (a, b) 0.3, 0.24, 0.18, 0.12, 0.06; (c) 0.05, 0.4, 

0.3, 0.2, 0.I. 
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200,000 fluid particles are released from a point source at (x, y) = (0,O) under four different 
conditions. The particles are tracked and their positions are monitored at specific time intervals. 
The four flow field conditions are: 

0) 

(ii) 

(iii) 

(iv) 

U, = 0, Uv = 0. Here there is no mean fluid velocity and no directional correlation 
of the fluctuating velocities. Particle movement is solely due to turbulent 
diffusion and, as expected, the contours are concentric circles since no particular 
direction is favoured [figure 3(a)]. 
U, = 0, r% = -0.4 m*/s’. Of course a situation like this never occurs in nature 
but it is very explicit as to the influence of the correlation. Again particle 
movement is due to turbulent diffusion but here it is also influenced by 
cross-correlation causing the particles to move in a specific direction. The 
negative value of the cross-correlation performs correctly due to the modifi- 
cation in the correlation functions mentioned previously [figure 3(b)]. 
U, = 13 ’ y m/s, uu = 0. Just like the previous one this situation is not physically 
realistic. There is no velocity correlation but particle motion is caused by both 
turbulent diffusion and the flow field’s mean velocity. It is interesting to note 
how the contour is a circle at first but the more the particles move away from 
the center and are exposed to a greater mean velocity, the contours become more 
and more elongated [figure 3(c)]. 
U, = 13 . y m/s, Uv = -0.4 m2/s2. This is the most realistic situation of the four. 
The first contours are influenced more by the correlation since the mean velocity 
is relatively small in the area close to the source point. As time passes and the 
particles start to move away, the field’s mean velocity plays a more important 
role, finally becoming more influential than the correlation and gradually 
changing the direction of the particles’ movement [figure 3(d)]. 

The same tests can be performed in three dimensions, but two dimensions were preferred so that 
the results could be better evaluated. 

2.3. Spatial Correlation 

All the tests performed above have been assuming massless Lagrangian fluid particles. According 
to Zhou & Leschziner (1991), if the time step is sufficiently small then a small and not very dense 
discrete particle and a fluid particle with the same initial position will not move too far away from 
each other during that one time step. Therefore, the discrete particle may be followed in one time 
step, assuming the carrier velocity at the discrete particle’s position to be the same as that of the 
fluid particle. This hypothesis restricts us to small and light particles as well as small time steps. 
Here, a spatial correlation method will be introduced that will help to overcome such restrictions. 
Berlemont et al. (1990) also include spatial correlation in their approach and the method described 
below is primarily based on the correlation function that they introduced. However, the principle 
of the proposed method is quite different. 

A discrete spherical particle’s trajectory is followed through a modified Riley equation 
(Berlemont et al. 1990) which neglects streamline curvature effects and assumes that the particles 
are not rotating or interacting. The particles that will be used in the following tests are relatively 
small and the velocity gradients that appear in the test flows are such as to permit the assumption 
that Saffman’s lift force is negligable. More details on the forces acting on the particle can be found 
in Smoot & Pratt (1979). The equation is finally given as: 

pPGP$= -$fC,(V- U)IV-UI-PPG,CA 
d(I’- U) 

dt + G,(P, - pr)s 

dr, [I51 

where Pf and pp are the fluid and particle density, respectively, G, is the particle volume, U and 
V are the instantaneous velocity of the fluid and the particle, respectively, d is the particle diameter, 
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X 

U= A * y  , u v =  c o n s t .  

Figure 3(a<l). Tracking of  fluid particles in various flow field conditions. Particles released at t = 0 s. 
Lines plotted at t = 0.02, 0.08, 0.144, 0.216 s. 

g is the acceleration of gravity vector, d/dt is along the discrete particle trajectory and D/Dt  is along 
the fluid trajectory. The CD, CA and CH coefficients are introduced in the original Riley equation 
to the drag term, the added mass term and the Basset term. As will be discussed later, only the 
drag term and the gravity term will be used here while the added mass and Basset term are 
neglected, since we will be dealing with low turbulence intensities and particles whose diameters 
are smaller than the Kolmogorov scale (v3/E) TM and whose densities are much larger than that of 
the fluid. Mei et al. (1991) studied the effect of the Basset term on the behaviour of particles in 
turbulent fields. They introduced two critical parameters with which to determine how important 
the Basset term is in a certain flow field. These were taken into consideration before ignoring the 
Basset term for the present calculations. Finally, the temporal derivatives of the fluid fluctuating 
velocities can also be neglected because of low turbulence levels. 

First, the particle Reynolds number is defined: 

Rep= I V -  UId ., [161 
v 

and for Rep < 200, CD becomes 

Rvp' ). CD=R~p( l+0 .15  ~06s7, [171 
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In [15], after the previous assumptions everything is defined so that V at the next time step can 
be calculated, except for the fluctuating part of U which is the fluid instantaneous velocity at the 
discrete particle's position. This can be calculated if a spatial correlation is developed between the 
fluid fluctuating velocities along the trajectory of a fluid particle starting at the same time and 
position as the discrete particle, and at the discrete particle's position. This could be accomplished 
using a similar concept to the one used for temporal and directional correlation. So, the fluid 
fluctuating velocities are connected through 

Vp = {K}vr + e,, [18] 

where the subscripts f and p denote the fluid and the discrete particles' position, respectively. The 
matrix {K} represents the influence of the distance between the two positions and e, the randomness 
involved because of the turbulence. The method remains precisely the same as in section 2.2, except 
that the correlations R u are now spatial correlations: 

R,, - ui~ ujr, [I 9] 
Idifldjf 

where i , j  = x , y ,  z and denote the three velocity components. The difficulty is in defining the 
correlations u~pujr between the two positions. Berlemont et al. (1990) propose using a Frenkiel 
family of correlations similar to [2]: 

- r  1 r mr 1 
= - cos 2 - - -  - , [20] 

UipUjf x//u~pu;rexp (m 2 T I ) L E J  L(m + I)LEuJ 
where r is the distance between the two positions and LEU are spatial correlation scales. Here a 
modification is proposed, expressing the correlations as 

Uipl.tjf = U~rUjrexp (m 2 ~ 1)LEuj L(mZ~-l)LE~j . [21] 

This modification is felt to be essential, for in the event that a cross-correlation is being calculated 
( i -~ j )  [20] cannot deal with the event that the Reynolds shear stress might be negative and 
therefore, for r ~ 0, the spatial correlation will not become equal to the real value of  the Reynolds 
shear stress at that point. The expression used in [21] overcomes this problem. 

The parameter m is now set to m = l, as is true for the temporal correlations in [2], because the 
flows to be predicted are more complex and m = 0 is no longer a good enough approximation. It 
should also be noted that in [20] and [21], i , j  = l, 2, 3--meaning that the function is true for a 
different coordinate system where u~ is collinear to the distance r. This means that certain changes 
in the coordinate system are required so that spatial correlation can be incorporated. The 
correlation scales are defined as 

u) = CL u2 + u) [22] LEt~= Cureuk/-~-f--,  ZL u 2 ~ '  

where CL is taken to be 0.2 for jets or pipe flows, E is the turbulent energy's rate of dissipation 
and C u are constants depending on the scale and the turbulence field. Again, here, there are 
modifications with relation to both Zhou & Leschziner (1991) and Berlemont et al. (1990). The 
latter use the form u~uj instead of(u  2 + u~)/2 which is used in [22]. In the event of negative Reynolds 
shear stresses this would lead to physically impossible negative values of the Lagrangian cross-time 
scales. Equations [22] simply consider them to be equal to the mean value of  the two relevant 
normal scales, thus preserving the physical meaning of Lagrangian time scales as the largest interval 
in time that a Lagrangian particle will continue moving in that particular direction (Hinze 1975). 

It should be pointed out that since spatial correlation is dependent on the distance, the 
correlations become zero if this distance becomes too large. At this point Berlemont et al. (1990) 
use a "correlation domain",  meaning that when, and only when, the distance between the positions 
f and p becomes larger than a length parameter Lg = C • LEO they start monitoring a new fluid 
particle from the discrete particle's current position. It is proposed here that a particle may be 
tracked by ignoring the correlation domain and starting the fluid particle from the discrete particle's 
position at each time step. This much simpler approach is possible, since even for large and dense 
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particles the spatial correlation will perform correctly for the distance acquired during one time 
step. At the same time an unknown parameter (Lg) is dealt with so that the constant C does not 
have to be arbitrarily defined. However, if there is no experimental data for the Eulerian length 
scales, a certain degree of uncertainty still holds for the constants in [22]. For the following 
calculations C u was taken to be unity. 

3. RELIABILITY OF THE COMPLETE DISPERSION MODEL 

Having put together the full model it was tested by predicting the experimental results obtained 
by Shuen et al. (1983b) and Hardalupas et al. (1990). However, these calculations required a 
calculation of the flow field taking into consideration the effect of the particles on the flow. This 
was performed using the basic SIMPLE algorithm with special source terms in the momentum 
equations to compensate for the momentum and energy exchange from the particles to the carrier 
phase. Due to this exchange, after the flow field had converged, a statistically large amount of 
particles (2000-5000) were tracked and then the flow field was recalculated. Usually 3-4 trackings 
are required, depending on the particle mass loading and the type of flow. 

As was mentioned above, the basic advantage of the present model is its ability to account for 
the anisotropic character of the turbulence. This is achieved through the correlations that have been 
presented but is also dependent on the Lagrangian time scale and the length scale used in the spatial 
correlation. The values used for these in the past were given by Gosman & Ioannides (1981) and 
later by Shuen et al. (1983a) as: 

L E = C u k 3 / 2 / E ,  T L = LE/(2/3k)  °s. [23] 

These values were a basic part of the previously used "isotropic" methods which sampled the 
fluctuations from the same Gaussian PDF as described in the Introduction. A new fluctuation was 
sampled when the distance between the discrete and fluid particles became larger than the eddy 
length L E [23]. This is the "isotropic method", with which results will be compared in the following 
tests. A complete description of this method (SIMPLE algorithm, particle tracking method etc.) 
can be found in Anagnostopoulos & Bergeles (1988, 1992), Diakoumakos et al. (1988) and 
Sargianos et al. (1990). An intermediate model will also be used for comparison. This will be 
referred to as "present method A" and includes all the features presented in the previous sections 
with the difference that the time and length scales will be those in [23] instead of [22], in other words 
they will be assumed directionally independent. This leads to the same correlation functions for 
the two (or three) velocity components but does not cripple the model, since the Reynolds stresses 
will still be calculated separately and thus account for anisotropy. It was first attemped to calculate 
the Reynolds stresses with Boussinesq's eddy viscosity model. However, serious deviations from 
physically acceptable results for the stresses led to the use of an algebraic Reynolds stress model. 
It should be pointed out that correct calculation of these stresses is essential to the model's 
performance. 

3.1. Tests f o r  the Experiments  o f  Shuen et al. (1983b) 

Shuen et al. (1983b) performed measurements on a free turbulent round jet. The inside diameter 
of the injector was 10.9 mm and the mean air velocity was 25.22 m/s. The particles that were tracked 
were 119/~m in diameter and had a density of 2620 kg/m 3, their mean injector exit velocity was 
21.89 m/s, while the mass loading was 66%. Results are given in the radial direction for the two 
measuring positions X / D  = 20 and 40 and in the axial direction at the centerline. For the prediction 
of the turbulent flow field, the ( K -  E) model was modified according to Launder & Spalding 
(1974): 

C~ = 0.09 - O.04f, (72 = 1.92 - 0.067f, [241 

with 

, xl x )]02 
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where Uc is the streamwise velocity on the jet axis, Y is the half-width of the jet and AU is the 
radial variation of the velocity over Y. 

The present results will be compared to the results obtained by Anagnostopoulos & Bergeles 
(1988), whose predictions were based on an isotropic hypothesis. 

The radial variation of the particles' axial velocity non-dimensionalized by the centerline value 
is presented in figures 4(a, b) for the axial positions X / D  = 20 and 40, respectively. As can be seen, 
there is a significant difference from the isotropic model---especially further away from the 
symmetry axis. The use of the anisotropic time and length scales (present method B) only slightly 
improves the predictions. The centerline variation of the particle mass flux non-dimensionalized 
by the outlet value is presented in figure 5, where the present model performs slightly better in the 
region near the injector exit and the use of the anisotropic time and length scales leads to an overall 
better prediction compared to the  previous isotropic method. Finally, the particles' turbulent 
kinetic energy calculated as kc = (u 2 + v 2 + w:)/2, where w = v, is presented in figure 6, where the 
present method with the anisotropic time and length scales clearly improves the predictions. The 
initial conditions for the particles were given at X / D  = 1 (not at the exit position) but there was 
no data for the particle radial velocities. This was overcome by assuming these velocities equal to 
those of the carrier phase at that position and could be the cause for the discrepancies near the 
jet exit. It should be noted that Berlemont et al. (1990) overestimate the particle velocities in a 
similar flow (different mass loading). 

3.2. Tests f o r  the Experiments  o f  Hardalupas et al. (1990) 

In Hardalupas et al. (1990) kerosene droplets, whose density was 780 kg/m 3, were injected into 
an unconfined quarl burner with a quari inlet diameter of 16 mm and a quarl exit diameter of 
38 mm. The flow had a swirl number of about 0.29 and the cold bulk velocity was 30 m/s. The 
kerosene flow rate was 0.07 dm3/min and the size class which will be studied are the 55-60 #m 
diameter kerosene droplets. The predictions are for inert flow while the X distance is measured from 
the quarl inlet. This test case was chosen because of the complexity the recirculation zone brings 
to the flow field. Furthermore, it is a good opportunity to test the model in three dimensions, 
something that is not presented with previous models neither in Berlemont et al. (1990) nor in Zhou 
& Leschziner (1991). 

Particle axial velocities non-dimensionalized by the cold bulk velocity are presented in figures 
7(a-c) for the "isotropic model" as presented in Anagnostopoulos & Bergeles (1992), while the use, 
or not, of anisotropic time and length scales (present methods B and A) surprisingly had a very 
small effect on the predictions. As can be seen, there is a definite improvement in relation to the 
isotropic model which underestimated velocities further away from the symmetry axis. 

4. C O M P U T A T I O N A L  D E T A I L S  

The computational grids used for the tests in section 3 were: 

(i) For Shuen et al. (1983b), computations were carried out for both 100 x 50 and 
40 x 20 grids [Anagnostopoulos & Bergeles (1988) used a 60 x 30 grid] without 
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Figure 4(a, b). Particle axial velocities (Shuen e t  a l .  1983b). O,  Experiment (Shuen e t  a l . ) ;  - -  , 

Anagnostopoulos & Bergeles (1988); . . . .  , present method A; - - ,  present method B. 
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Figure S. Particle centerline mass flux (Shuen e t  al .  1983b). 
O ,  Experiment (Shuen e t  a l . ) ;  . . . .  , Anagnostopoulos & 
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Figure 6. Part icle turbulent  kinetic energy (Shuen et aL 
1983b). O ,  Exper iment  (Shuen et al.); . . . .  , Anagnosto -  
poulos & Bergeles (1988); . . . .  , present method A; , 

present method B. 

significant differences. This is logical since the flow field is rather simple. The 
results are from the 100 x 50 grid computations. 

(ii) For Hardalupas et  al. (1990), grid independence was achieved for a 35 x 40 grid, 
which is the same grid as used by Anagnostopoulos & Bergeles (1992). A finer 
grid was required compared to in the previous test because of the complexity of 
the flow (recirculation zone etc.). 
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Figure 7(a-c). Particle axial velocities (Hardalupas e t  at .  1990). O,  Experiment (Hardalupas e t  a l . ) ;  . . . .  , 
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The particles, however, were tracked in grids that were twice the size of the flow field's grid. This 
does not make convergence slower but gives better approximations for the results related to the 
particles. The time step used was also derived from this finer grid and taken to be small enough 
so that the particle would not leave a grid cell in only one step. Within this limitation the time 
step can be taken as large as possible due to the advantages of the model mentioned in previous 
sections. 

A criterion of convergence of the flow field was that residual source terms of each velocity 
component and the residual mass source term became smaller than 0.3% of the inlet value. An 
example of the convergence is presented in figure 8 for the case of Hardalupas et al. (1990). The 
two-phase field was considered converged when two subsequent trackings (indicated by circles in 
figure 8) brought on no significant difference to the flow field and, thus, the field converged in very 
few iterations after the particles had been tracked. As previously mentioned, about 3-4 trackings 
were required. 

It should be noted that although the 2000-5000 particle trajectories mentioned above 
are sufficient for the convergence of the flow field, about l0 times as many are then used 
to obtain statistically smooth curves depending on the type of field and on the mass 
loading. 

Although the initial conditions for the particles were relatively well defined in the test cases that 
were considered, the "rough" assumption used to overcome the few undefined conditions 
(subsection 3.1) was the only possible solution and could be the cause of undesirable effects as 
mentioned above. Radial profiles of the initial conditions are not shown here due to lack of space, 
however they can be found in the corresponding references. 

For the test case of subsection 3.1, the mass loading of 66% is quite large. However, we are 
dealing with particles that are relatively small and dense and, therefore, the particle-fluid volume 
fraction is small enough (0.03%) to permit the assumption that particle-particle interactions 
may be neglected. These interactions are probably negligable here, considering that particles 
of about the same density were well predicted by Sargianos et al. (1990) and by Berlemont et al. 

(1990) at a mass loading of 80 and 85% respectively, without taking particle interactions into 
account. 

As expected, the CPU time for the present method was greater than for the previous methods, 
which assumed an isotropic character of the flow. On an IBM compatible 386-SX computer with 
a coprocessor of 20 MHz the previous method tracked 100 particles in about 3 min, while the 
present method needed about 3 times as much time. However, as discussed above, the tracking time 
step is directly related to the density of the grid and while the previous method demanded small 
time steps, the present one does not. This was not taken advantage of in the timing, since a larger 
time step would have caused the particle to exceed the limit of one grid cell in one step. A coarser 
grid for the particles could have been acceptable for the present method, leading to larger time steps 
and shorter CPU times. 
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5. CONCLUSIONS 

A Lagrangian approach to the prediction of particle behaviour in anisotropic turbulence was 
presented. The new approach is three-dimensional and considers the effect of the anisotropy of the 
turbulence on the particles. 

Following a particle trajectory requires knowledge related to the carrier phases fluctuating 
turbulent velocity. Temporal correlation of these fluctuations in subsequent time steps 
was introduced. Then the three components of the fluctuations were directionally correlated 
to account for the anisotropic influence. Heavier particles do not follow a fluid particle's 
trajectory and therefore fluid fluctuating velocities at their position must be derived from 
those at the fluid particle's position through a spatial correlation feature which is also in- 
corporated. 

The tests performed in sections 2.1 and 2.2 are definite proof as to the correct performance of 
the method when predicting anisotropic turbulence. In section 2.3 spatial correlation is introduced 
and the full model is used in section 3 to predict first a simple two-phase turbulent round free jet 
(Shuen et al. 1983b) and then a more complicated swirling flow from an unconfined quarl burner 
(Hardaipas et al. 1990). In that section, uncertainties arise with respect to the constants appearing 
in the correlation function. The results though imply that the use of anisotropic time and length 
scales does not make a significant difference and isotropic scales are quite adequate. However, a 
further investigation into this conclusion is considered important. Other areas that would probably 
influence the model are the Reynolds stress model and possible improvements in the correlation 
functions (the spatial correlation in particular). 

The overall predictions were favourable and suggest that the model will prove useful in the 
prediction of anisotropic two-phase flows. Applications of this type of modelling (in the isotropic 
phase so far) are presently being performed at the National Technical University of Athens, 
simulating pulverized coal combustion in a furnace. 
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